If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-32X+208=0
a = 1; b = -32; c = +208;
Δ = b2-4ac
Δ = -322-4·1·208
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{3}}{2*1}=\frac{32-8\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{3}}{2*1}=\frac{32+8\sqrt{3}}{2} $
| 2x^2+17x=210 | | X2-32x+208=0 | | 64^2x-7=2^x^2-10 | | -(-2x-9)=0 | | 2x2–16x+30=0 | | 13-3x4-2=T | | 1/2x+1/4=3/4x-1/6 | | -(-2x+7)=0 | | 7/27=25/x | | -(-5x+10)=0 | | C=25x+200. | | -4-5+6=m | | 6+5-4=t | | 5/6x=-101/3 | | 3g-2(g+4)=(g-1) | | t=-13+(=3) | | w=-12 | | 4h+5.1=15.5 | | 4t-10=12+2(t+8)=10 | | 5=10(x+8) | | x+20+2x-20+60=180 | | 6x^2+17x-15=0 | | 2(x+1)=23x+9 | | 2(x+4)+9(x+4)+4=0 | | y+1/10=-1/8 | | y-4/9=-7/2 | | -(-x-9)=0 | | x+(x+49.50)=125.74 | | 3004+1007=r | | 31+3a=2(9a-5) | | y=-684+379 | | x=342+456 |